Чему равно сопротивление катушки в цепи переменного тока

Катушка индуктивности: параметры и характеристики.

Индуктивность в цепи постоянного тока

Для лучшего понимания происходящих процессов в катушке, рассмотрим, что происходит в катушке при подаче на нее постоянного напряжения.
При подключении источника питания к катушке в ней начинает протекать ток, который создает вокруг неё магнитное поле.
Магнитные силовые линии поля распространяются через витки катушки наружу пересекая их, и образуют при этом ЭДС самоиндукции.
Эта ЭДС, согласно правилу Ленца, будет препятствовать мгновенному нарастанию тока в катушке. Нарастание тока происходит постепенно, по экспоненциальному закону.
Через небольшой промежуток времени переходной процесс заканчивается, и ток достигает своего нормального значения.
Продолжительность нарастания тока в секундах определяется по формуле:

где L — индуктивность катушки в генри , а R — общее сопротивление всей цепи в омах .
Если, к примеру, индуктивность катушки L=0,6 Г, а сопротивление цепи R=60 Ом, тогда длительность переходного процесса будет равна:
t=3•0,6/60=0,03 сек.

При отключении батареи от катушки индуктивность тоже происходит переходный процесс (такой опыт с первичной обмоткой трансформатора показан на странице «Электромагнетизм» рис.е).
В этом случае силовые магнитные линии будут приближаться к центру катушки опять пересекая ее витки. Создается ЭДС самоиндукции, которая уже направлена не против тока, а (опять же по правилу Ленца) совпадающая с направлением прерванного тока.

Если катушка имеет большую индуктивность (в нашем опыте катушкой является первичная обмотки трансформатора с большим количеством витков и значительным железным сердечником) и через нее протекал большой ток, то тогда ЭДС самоиндукции, появляющая на концах катушки индуктивности, может достигать величины во много раз больше напряжения источника питания.
Это объясняется тем, что при размыкании питающей сети энергия, запасенная в магнитном поле катушки, не исчезает, а превращается в ток.
Напряжение между концами катушки индуктивности может достигать таких значений, которое способно привести к пробою между обмотками, а так же выводу из строя полупроводниковых приборов. Это надо надо учитывать на практике при работе с приборами, имеющие катушки с большой индуктивностью через которые проходит значительный ток.

Индуктивность в цепи переменного тока

Для опытов с постоянным током катушка индуктивности намотана тонким проводом с большим количеством витков.
Это делается для того, чтобы при подаче на нее напряжения с мощного источника питания витки катушки не перегорели, т.к. при намотке витков толстым проводом сопротивление будет маленьким, а ток через нее большой (по закону Ома для постоянного тока I=U/R) и она может сгореть.
Сопротивление катушки индуктивности постоянному току (которое можно измерить мультиметром) называется активным сопротивлением.

Будет иначе, если в цепь катушки подать переменный ток.
При этом магнитное поле катушки индуктивности становится тоже переменным.
На рисунке показано, как меняется магнитное поле при синусоидальном токе. Во время периода магнитное поле меняет как свою силу, так и свое направление по синусоидальному закону. А это значит, что при этом возникает ЭДС самоиндукции, которая, согласно правилу Ленца, будет препятствовать приложенному извне напряжению.

Рассмотрим график происходящих процессов в катушке индуктивности.
При включения катушки в цепь переменного тока в первую четверть периода ( 0º-90º ) на катушку поступает нарастающее напряжение и ее магнитное поле «расширяется», накапливая магнитную энергию. Ток, в этот момент, противодействующей ЭДС самоиндукции, максимальный и противоположный по знаку с напряжением на катушке.
За другую четверть периода ( 90º-180º ), когда напряжение на катушке индуктивности уменьшается, магнитное поле «сворачивается», индуцируя ЭДС самоиндукции, которое совпадает с направлением тока. Этот ток самоиндукции в катушке старается уже «помочь» уменьшающему переменному току сохранить достигнутый большой магнитный поток. В этот полупериод катушка индуктивности уже не потребляет, а отдает энергию обратно генератору.
Следовательно, происходит постоянный обмен энергий между генератором и катушкой. А это означает, что средняя мощность потребления катушки равна нулю.
Благодаря разнице фаз тока и напряжения в 90º, катушка индуктивности имеет реактивную мощность и, соответственно, реактивное сопротивление , как и конденсатор. Разница лишь в том, что в катушке индуктивности напряжение опережает ток, а в конденсаторе — наоборот.
Реактивное (индуктивное) сопротивление катушки, в отличии от ее активного сопротивления , не вызывает безвозвратных потерь энергии.

Допустим, возьмем идеальную катушку , в которой не учитываются сопротивления провода и другие потери.
Тогда катушка индуктивности окажет переменному напряжению индуктивное сопротивление XL ,которое измеряется в омах и вычисляется по формуле:

где f — частота тока в герцах (Гц), а L — индуктивность катушки в генри (Г).
Отсюда видно, что величина индуктивного сопротивления катушки зависит от частоты и индуктивности. Чем выше частота тока и больше индуктивность катушки, тем больше индуктивное сопротивление.

К примеру, найдем индуктивное сопротивление катушки индуктивностью 5Г на частоте 50Гц.
XL=2π•50•5=1570 Ом.
На частоте 1кГц эта катушка будет иметь индуктивное сопротивление 31кОм, а на 1МГц — 31МОм. На графике показана зависимость упомянутой катушки от частоты.

Теперь, зная значение индуктивного сопротивления, можно записать закон Ома при переменном токе через катушку:

Например,найдем ток, который протекает через идеальную катушку с индуктивностью L=500 мкГ, если ее подключить к переменному напряжению U=0,4 В и частотой f=500 кГц.
I= 0,4/2•3,14•5•10 3 •500•10 -6 =0,25 мА

В реальной катушке нужно учитывать не только индуктивное сопротивление, но и сопротивление потерь Rпот.
На низких частотах Rпот равно только сопротивлению провода катушки. При повышении частоты на катушке сопротивление потерь будет возрастать за счет появления других потерь (вихревые токи, поверхностный эффект проводника и т.д.) (рис. а ).
Поэтому полное сопротивление катушки индуктивности переменному току на средних частотах равно:

и называется импедансом.
На высоких частотах начинает оказывать еще влияние cобственная (паразитная) емкость катушки Спараз , которая шунтирует индуктивность (рис. b ).

Основными параметрами высокочастотных катушек индуктивности являются индуктивность, добротность и собственная емкость .
Индуктивность зависит от количества витков, размера катушки и наличия ферромагнитного сердечника. Чем больше намотано витков на катушке, тем больше ее индуктивность. А наличие сердечника увеличит индуктивность катушки.
Добротность определяет качество катушки индуктивности и равна отношению индукнивного сопротивления к сопротивлению потерь:

Чем больше добротность, тем качественнее катушка. Катушкой хорошего качества считается катушка с добротностью от 50 до 200.
Чтобы достигнуть такого качества используют следующие средства:
— применением сердечников, при которых увеличивается индуктивность при меньшем числе витков катушки (т.е. уменьшается сопротивление провода);
— увеличение толщины провода, что, правда, увеличит габариты катушки;
— в диапазоне длинных и средних волн применение провода литцендрат, который состоит из определенного количества проволочек изолированных друг от друга.
Собственная емкость катушки индуктивности обусловлена емкостью обмотки и является нежелательной. Для ее уменьшения применяются различные способы намотки катушки.
Одним из способов является перекрестная намотка типа «универсаль» (рис. c ). Так же применяется намотка витков не плотно друг к другу, а на определенном расстоянии с принудительным шагом)(рис. d,e ).

Чему равно сопротивление катушки в цепи переменного тока

ЭКСПЕРИМЕНТ 18 Катушки индуктивности и переменный ток

После проведения данного эксперимента Вы сможете объяснить эффект индуктивности в схеме переменного тока и рассчитать значения индуктивности и реактивного сопротивления по результатам измерении.

Необходимые принадлежности

* Осциллограф

* Катушка индуктивности 100 мГн

* Генератор функций / сигнал-генератор

ВВОДНАЯ ЧАСТЬ

Когда катушка индуктивности включается в цепь переменного тока, непрерывные изменения напряжения приводят к изменениям тока, которые в свою очередь генерируют то возрастающее, то убывающее магнитное поле. Это магнитное поле индуцирует встречное напряжение в катушке индуктивности, и оно противодействует изменениям тока. В результате имеет место непрерывное противодействие протеканию тока. Это противодействие называется индуктивным сопротивлением (XL).

формула индуктивного сопротивления

Индуктивное сопротивление катушки или дросселя зависит от частоты приложенного переменного напряжения (f) и значения индуктивности (L) в генри. Для вычисления индуктивного сопротивления, выражаемого в омах, служит простая формула:

Читайте также  Как работает двухтарифный счетчик электроэнергии

Индуктивное сопротивление прямо пропорционально частоте и индуктивности. Если известно индуктивное сопротивление, путем преобразования основной формулы может быть найдена или частота, или индуктивность, как показано ниже:

формула полного сопротивления

Вспомните, что чистых индуктивностей нет, поскольку катушки индуктивности сделаны с использованием проволоки, которая имеет сопротивление. Полное сопротивление, оказываемое катушкой индуктивности переменному току, представляет собой, следовательно, комбинацию индуктивного сопротивления и обычного (активного) сопротивления. Это комбинированное противодействие известно как полное сопротивление (или импеданс). Полное сопротивление может быть вычислено при помощи формулы:

Вспомните, что индуктивность приводит к запаздыванию тока относительно напряжения. По

этой причине напряжения на катушке индуктивности и на резисторе сдвинуты по фазе на 90 градусов друг относительно друга. Это как раз и не позволяет нам просто сложить вместе индуктивное сопротивление и активное, сопротивление, чтобы получить величину импеданса.

Если известно полное сопротивление, а индуктивное сопротивление или активное сопротивление неизвестно, предыдущая формула может быть преобразована для их нахождения следующим образом:

Если известно полное сопротивление индуктивной схемы, Вы можете рассчитать ток в схеме, если Вы знаете приложенное напряжение. Это осуществляется применением закона Ома:

Естественно, эта формула также может быть преобразована для вычисления двух других переменных, если это потребуется:

Краткое содержание

В данном эксперименте Вы познакомитесь с эффектом индуктивности в схеме переменного тока.

1. Измерьте сопротивление обмотки катушки индуктивности при помощи мультиметра.

Сопротивление постоянному току =____ Ом

2. Присоедините катушку индуктивности 100 мГн к сигнал-генератору, формирующему напряжение размаха 4 Vpp с частотой 400 Гц.

3. Теперь измерьте фактическое значение тока первичной обмотки. Вспомните, что амперметр должен включаться последовательно со схемой для выполнения измерения. Подключите мультиметр для измерения переменного тока. Убедитесь, что генератор продолжает формировать 4 Vpp.

Is= _____ МА

4. Используя информацию, которую Вы собрали

в предыдущих шагах, и формулы, приведенные в вводной части, рассчитайте полное сопротивление схемы.

Z = _____ Ом

5. Используя информацию, которую Вы собрали в предыдущих шагах, и формулы, приведенные в вводной части, рассчитайте индуктивность (L) катушки. L = _____ мГн

ОБЗОРНЫЕ ВОПРОСЫ

1. При увеличении частоты переменного тока, пропускаемого через катушку индуктивности, индуктивное сопротивление:

в) остается без изменения.

2. При уменьшении величины индуктивности в схеме индуктивное сопротивление:

в) остается без изменения.

3. При уменьшении сопротивления катушки индуктивности ее полное сопротивление:

в) остается без изменения.

4. Единицей измерения для величины индуктивного сопротивления является:

5. Катушка индуктивности имеет (активное) сопротивление 120 Ом. Когда к катушке прикладывается переменное напряжение 24 В с частотой 60Гц, протекает ток 111 мА. Значение индуктивности составляет приблизительно:

Чему равно сопротивление катушки в цепи переменного тока

Закон Ома для цепей переменного и постоянного тока

Закон Ома является одним из основных законов электротехники. Он довольно прост и применяется при расчете практически любых электрических цепей. Но данный закон имеет некоторые особенности работы в цепях переменного и постоянного тока при наличии в цепи реактивных элементов. Эти особенности нужно помнить всегда.

Закон Ома для цепи постоянного тока

Классическая схема закона Ома выглядит так:

А звучит и того проще – ток, протекающей на участке цепи, будет равен отношению напряжения цепи к ее сопротивлению, что выражается формулой:

Но ведь мы знаем, что помимо активного сопротивления R, существует и реактивные сопротивления индуктивности ХL и емкости XC. А ведь согласитесь, что электрические схемы с чисто активным сопротивлением встречаются крайне редко. Давайте рассмотрим схему, в которой последовательно включена катушка индуктивности L, конденсатор С и резистор R:

Помимо чисто активного сопротивления R, индуктивность L и емкость С имеют и реактивные сопротивления ХL и XC, которые выражены формулами:

Где ω это циклическая частота сети, равная ω = 2πf. f – частота сети в Гц.

Для постоянного тока частота равна нулю (f = 0), соответственно реактивное сопротивление индуктивности станет равным нулю (формула (1)), а емкости – бесконечности (2), что приведет к разрыву электрической цепи. Отсюда можно сделать вывод, что реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для цепи переменного тока

Если рассматривать классическую электрическую цепь и на переменном токе, то она практически ничем не будет отличаться от постоянного тока, только источником напряжения (вместо постоянного — переменное):

Соответственно и формула для такого контура останется прежней:

Но если мы усложним схему и добавим к ней реактивных элементов:

Ситуация изменится кардинально. Теперь f у нас не равна нулю, что сигнализирует о том, что помимо активного, в цепь вводится и реактивное сопротивление, которое также может влиять на величину тока, протекаемого в контуре и приводить к резонансу. Теперь полное сопротивление контура (обозначается как Z) и оно не равно активному Z ≠ R. Формула примет следующий вид:

Соответственно немного изменится и формула для закона Ома:

Почему это важно?

Знание этих нюансов позволит избежать серьезных проблем, которые могут возникнуть при неправильном подходе к решению некоторых электротехнических задач. Например, в контур переменного напряжения подключена катушка индуктивности со следующими параметрами: fном = 50 Гц, Uном = 220 В, R = 0,01 Ома, L = 0,03 Гн. Ток, протекающий через данную катушку будет равен:

В случае, если подать на эту же катушку постоянное напряжение с таким же значением, получим:

Мы видим, что ток катушки возрастает в разы, что приводит к выходу из строя элементов контура.

  1. Какой ток для зарядки автомобильного аккумулятора
  2. Какой ток у аккумулятора в машине
  3. Сколько должен показывать новый аккумулятор
  4. Сколько вольт на новом аккумуляторе
  5. Сколько вольт для зарядки автомобильного аккумулятора
  6. Как определить емкость батарейки
  7. Как узнать емкость аккумулятора автомобиля
  8. Как можно определить емкость аккумулятора
  9. Как проверить емкость аккумулятора автомобиля мультиметром

Активное и реактивное сопротивление. Треугольник сопротивлений

Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.

В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.

Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

Читайте также  Как измерить ток утечки

Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока

Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.

Активное сопротивление

В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, равно активному сопротивлению.

При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.

Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:

R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.

На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.

Реактивное сопротивление

Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением.

Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения.

При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.

Активное и реактивное сопротивление, свойства и разновидности

Рассмотрим два вида этого сопротивления: емкостное и индуктивное. Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока. В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

Треугольник сопротивлений

Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.

Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.

По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.

Похожие темы:

Катушка индуктивности в цепи переменного тока

Индуктивность в цепи переменного тока будет влиять на силу переменного тока. Проверим это на следующем опыте.

Возьмем два источника питания. Один из них пусть будет источником постоянного напряжения, а второй – переменного. Причем подберем источники так, чтобы постоянное значение напряжения равнялось действующему значению переменного напряжения. Подключим к ним с помощью переключателя цепь, состоящую из лампочки и катушки индуктивности.

Причем лампочка и катушка подключены последовательно. Переключатель включим так, чтобы при одном положении цепь питалась от источника постоянного тока, а при другом – от источника переменного тока.

При включении питания от источника постоянного тока лампочка загорится очень ярко. Если подключить цепь к источнику тока с переменным напряжением, то лампочка будет гореть, но заметно слабее. Можем сделать вывод, что действующее значение силы тока при переменном токе меньше, чем сила тока при постоянном источнике.

Индуктивность катушки

Это можно объяснить с помощью явления самоиндукции. ЭДС самоиндукции катушки будет достаточно большим, и будет препятствовать нарастанию силы тока, поэтому свое максимальное значение сила тока достигнет только спустя некоторое время. Если напряжение будет быстро меняться, то сила тока не будет успевать достигнуть своего максимального значения.

Можно сделать вывод, что индуктивность катушки будет ограничивать максимальное значение силы тока. Чем больше индуктивность катушки и частота изменения напряжения, тем меньше будет максимальное значение силы тока.

Рассмотрим цепь, в которой есть только катушка индуктивности. При этом значение сопротивления катушки и соединительных проводов пренебрежимо мало.

Выясним, как будут связаны напряжение на катушке с ЭДС самоиндукции в ней. При сопротивлении катушки равном нулю, напряженность электрического поля внутри проводника тоже будет равна нулю. Равенство нулю напряженности возможно.

Напряженности электрического поля создаваемого зарядами Eк будет соответствовать такая же по модулю и противоположно направленная напряженность вихревого электрического поля, которое появится вследствие изменения магнитного поля.

Следовательно, ЭДС самоиндукции ei будет равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Конденсатор в цепи переменного тока

При изучении постоянного тока мы узнали, что он не может проходить в цепи, в которой есть конденсатор. Так как конденсатор — это две пластины, разделенные слоем диэлектрика. Для цепи постоянного тока конденсатор будет, как разрыв в цепи. Если конденсатор пропускает постоянный ток, значит, он неисправен.

Рассмотрим, как будет меняться сила тока в цепи, содержащей конденсатор, с течением времени. При этом будем пренебрегать сопротивлением соединяющих проводов и обкладок конденсатора.

Напряжение на конденсаторе будет равняться напряжению на концах цепи. Значит, мы можем приравнять эти две величины.

Видим, что заряд будет изменяться по гармоническому закону. Сила тока — это скорость изменения заряда. Значит, если возьмем производную от заряда, получим выражение для силы тока.

I = q’ = UmC ω cos( ω t+ π /2).

Разность фаз между колебаниями силы тока и заряда, а также напряжения, получилась равной π /2. Получается, что колебания силы тока опережают по фазе колебания напряжения на π /2. Это представлено на рисунке.

Из уравнения колебаний силы тока получаем выражение для амплитуды силы тока:

Введем следующее обозначение:

Запишем следующее выражение закона Ома, используя Xc и действующие значения силы тока и напряжения:

Xc — величина, называемая емкостным сопротивлением.

Катушка индуктивности в цепи переменного тока

Индуктивность в цепи переменного тока будет влиять на силу переменного тока.

Рассмотрим цепь, в которой есть только катушка индуктивности. При этом значение сопротивления катушки и соединительных проводов пренебрежимо мало.

Выясним, как будут связаны напряжение на катушке с ЭДС самоиндукции в ней. При сопротивлении катушки равном нулю, напряженность электрического поля внутри проводника тоже будет равна нулю. Равенство нулю напряженности возможно.

Читайте также  Что называется электростатическим полем

Напряженности электрического поля создаваемого зарядами Eк будет соответствовать такая же по модулю и противоположно направленная напряженность вихревого электрического поля, которое появится вследствие изменения магнитного поля.

Следовательно, ЭДС самоиндукции ei будет равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Следовательно: ei = -u.

Сила тока будет изменяться по гармоническому закону: I = Im sin(ωt).

ЭДС самоиндукции будет равна: Ei = -Li’ = -L ω Im cos( ω t).

Следовательно, напряжение будет равно: U = L ω Im cos( ω t) = L ω Im sin( ω t+ π /2).

Im = Um /(ωL). Введем обозначение XL = ωL. Эта величина называется индуктивное сопротивление.

Чему равно сопротивление катушки в цепи переменного тока

Эрл Д. Гейтс

«ВВЕДЕНИЕ В ЭЛЕКТРОНИКУ»

Серия: «Учебники и учебные пособия»

Создание этой книги началось с написания обзора, который я завершил несколько лет назад. Тогда я рассмотрел около двадцати специальностей в электронной промышленности и попытался ответить на следующие вопросы:

1. Какой должна быть подготовка студентов, начинающих работать в области электроники после окончания учебного заведения?

2. Соответствуют ли цели и приоритеты используемых в настоящее время программ высшей школы по электронике изменениям в промышленности?

Исследование показало, что промышленности нужен выпускник по специальности «электроника», который сможет обнаружить неисправности, провести измерения с помощью различного тестирующего оборудования, особенно с помощью осциллографа, он должен уметь паять, знать, где найти информацию и ориентироваться в справочной литературе по электронике.

Я обнаружил также, что промышленность больше ценит в студентах способность делать, чем способность знать.

Короче говоря, я пришел к выводу, что обучению теории надо посвящать времени меньше, а практике — больше.

Второе издание Введения в электронику продолжает давать студентам основные знания по электронике, в которых нуждается промышленность. Текст книги тщательно проработан с целью сделать процесс обучения более легким и эффективным. Курс рассчитан на один год и сосредоточен на привитии исследовательских навыков, а не на обучении мастерству. Предполагается в первом семестре изучать цепи постоянного и переменного тока, во втором — полупроводники и линейные цепи, в третьем — цифровые устройства.

Ниже приведены некоторые основные особенности изложения материала:

• Главы книги очень короткие и посвящены узким вопросам.

• В начале каждой главы указаны цели обучения.

• Для улучшения восприятия материала в книге широко используются иллюстрации.

• В каждой главе имеются обзорные вопросы для того, чтобы студент мог проверить себя.

• Математика в книге используется только для записи основных формул.

• Частые примеры показывают, как использовать математические формулы.

• В резюме после каждой главы перечислены наиболее важные вопросы.

• Каждую главу завершают вопросы для самопроверки.

При разработке книги было сделано все, чтобы она отвечала потребностям как студентов, так и преподавателей.

Структура книги такова, что материал в ней изложен в логической последовательности. Однако, поскольку каждая глава является самостоятельной единицей, последовательность изложения материала студентам может изменяться в зависимости от стиля преподавания.

Я пригласил преподавателя математики для проверки точности всех примеров и ответов на вопросы самопроверки. Все примеры в книге подготовлены с помощью этого преподавателя. Благодаря такому подходу созданы примеры, которые помогут студенту связать математику, изучаемую на уроках математики, с математикой, используемой в электронике.

Поскольку в лаборатории студенты применяют изученную в классе теорию на практике, я разработал руководство по лабораторным работам, которое удовлетворяет требованиям промышленности. Честолюбивые проекты подкрепляют процесс обучения студентов и помогают им увидеть, как теория становится практикой.

Настоящий учебник и руководство по лабораторным работам помогут студентам расширить их знания в области электроники. Я включил путеводитель по учебному плану в Путеводитель Инструктора, который служит основой для программ но электронике. Этот учебный план используется в нашем школьном округе несколько лет и успешно себя зарекомендовал. Кроме того, путеводитель по учебному плану был представлен в Департамент Образования штата Нью-Йорк и одобрен там как один из вариантов технологических программ.

Мне хотелось бы поблагодарить двух людей, чья помощь и поддержка сделала переработку этой книги возможной: учителя математики Черил Сколэнд и преподавателя электроники Ролфа Тидеманна из Греческой Центральной Школы. Мне хотелось бы также выразить свою признательность представителям промышленности, которые продолжали оказывать мне поддержку, когда я нуждался в ней: Джералду Бассу, президенту EIC Electronics и Томасу Фегаделу, владельцу Glenwood Sales. Благодарю также многочисленных преподавателей, которые использовали текст книги на своих уроках и обратили мое внимание на неточности, указав, какие вопросы надо исключить или расширить.

Мне хотелось бы также поблагодарить рецензентов за их значительную поддержку: Джеймса Роунера из Ланкастерской профессиональной школы; Гэри А. Смита из Гротонской центральной школы, Рональда Дж. Фронковяка из Центра Образования Орлеан/Ниагара, Хоя Дж. Дэвиса из Высшей школы графства Вебстер и Джоэла Шнейда из Высшей Школы Восточного Виндзора.

И, наконец, я хотел бы поблагодарить мою жену Ширли, моих дочерей Кимберли и Сьюзен и моего сына Тимоти, которые поддерживали меня при создании этого текста.

Эрл. Д. Гейтс

Перечисленные ниже меры предосторожности не заменяют инструктаж, проводимый в классе или приведенный в руководстве по лабораторным работам. Если в какой-то момент у вас возникнет вопрос, что делать дальше, проконсультируйтесь с преподавателем.

ОБЩИЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ

Ввиду возможности получения травмы, опасности пожара и повреждения оборудования и материалов, при любых работах, связанных с электрическими и электронными цепями, должны соблюдаться следующие меры безопасности:

1. Выключите питание перед началом работы с цепью или оборудованием. Никогда не пренебрегайте безопасными соединительными устройствами. Никогда не предполагайте, что цепь выключена, проверьте это с помощью вольтметра.

2. Удаляйте и заменяйте предохранители только после отключения питания от цепи.

3. Убедитесь в том, что все оборудование правильно заземлено.

4. Проявляйте предельную осторожность при удалении или установке аккумуляторов, содержащих кислоту.

5. Используйте летучие очищающие жидкости только в хорошо проветриваемых помещениях.

6. Храните ветошь и другие легковоспламеняющиеся материалы в плотно закрытых металлических контейнерах.

7. В случае поражения электрическим током обесточьте цепь и немедленно доложите преподавателю.

МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С ВЫСОКИМ НАПРЯЖЕНИЕМ

По мере приобретения опыта в работе с электрическими цепями, люди, как это свойственно человеческой природе, становятся беспечными при выполнении рутинных операций. Многие части электрического оборудования используют опасные для жизни напряжения, которые могут оказаться смертельными при контакте с ними. При работе с высоковольтными цепями или вблизи них всегда следует соблюдать следующие меры предосторожности:

1. Обдумайте последствия каждого вашего действия. Нет абсолютно никаких причин считать, что вы не подвергнете опасности свою жизнь и жизни других.

2. Держитесь подальше от включенных цепей. Не работайте и не настраивайте цепи при включенном высоком напряжении.

3. Не работайте в одиночку. Всегда работайте в присутствии других лиц, способных оказать вам поддержку и первую помощь при несчастном случае.

4. Не нарушайте соединений.

5. Не заземляйтесь. Убедитесь в том, что вы не заземлены при проведении настроек или при использовании измерительных инструментов.

6. Никогда не включайте оборудование при повышенной влажности.

ЛИЧНЫЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ

Уделите время принятию мер предосторожности при работе с электрическими и электронными цепями. Не работайте с любыми цепями или оборудованием до тех пор, пока не будут соблюдены все меры безопасности.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: